Novel, Non-aqueous Bioconversion Systems Using Fungal Spores
نویسندگان
چکیده
منابع مشابه
[Novel bioconversion systems using a yeast molecular display system].
The budding yeast Saccharomyces cerevisiae has been used for the process of fermentation as well as for studies in biochemistry and molecular biology as a eukaryotic model cell or tool for the analysis of gene functions. Thus, yeast is essential in industries and researches. Yeast cells have a cell wall, which is one characteristic that helps distinguish yeast cells from other eukaryotic cells ...
متن کاملFungal Bioconversion of Lignocellulosic Residues; Opportunities & Perspectives
The development of alternative energy technology is critically important because of the rising prices of crude oil, security issues regarding the oil supply, and environmental issues such as global warming and air pollution. Bioconversion of biomass has significant advantages over other alternative energy strategies because biomass is the most abundant and also the most renewable biomaterial on...
متن کاملFungal spores: hazardous to health?
Fungi have long been known to affect human well being in various ways, including disease of essential crop plants, decay of stored foods with possible concomitant production of mycotoxins, superficial and systemic infection of human tissues, and disease associated with immune stimulation such as hypersensitivity pneumonitis and toxic pneumonitis. The spores of a large number of important fungi ...
متن کاملA novel and efficient fungal delignification strategy based on versatile peroxidase for lignocellulose bioconversion
BACKGROUND The selective lignin-degrading white-rot fungi are regarded to be the best lignin degraders and have been widely used for reducing the saccharification recalcitrance of lignocellulose. However, the biological delignification and conversion of lignocellulose in biorefinery is still limited. It is necessary to develop novel and more efficient bio-delignification systems. RESULTS Phys...
متن کاملSurface tension propulsion of fungal spores.
Most basidiomycete fungi actively eject their spores. The process begins with the condensation of a water droplet at the base of the spore. The fusion of the droplet onto the spore creates a momentum that propels the spore forward. The use of surface tension for spore ejection offers a new paradigm to perform work at small length scales. However, this mechanism of force generation remains poorl...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Oleo Science
سال: 2018
ISSN: 1345-8957,1347-3352
DOI: 10.5650/jos.ess18065